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Abstract. We discuss criteria for discriminating between ‘ballistic’ and ‘clean’ quantum
structures created in the 2D electron gas of gated semiconductor heterostructures and show
that they are different for impurity potential fluctuations of short and long range. For long-
range fluctuations, such as in high-mobility modulation-doped heterostructures, we show that
the criterion for the system to be clean—so that impurity scattering is not at all important—can
be met. Hence, disorder-induced gaps in the electron spectrum can be ignored while considering
dynamical properties in a time-dependent magnetic field even at a relatively low rate of change.
The magnetization of a 2D clean quantum dot turns out to be very sensitive to inelastic relaxation
processes in the system. In contrast to the usual destructive role played by inelastic scattering in
mesoscopic phenomena, here inelastic scatteringrestoresan Aharonov–Bohm type of quantum
oscillation in the magnetization. In the absence of such relaxation, strong non-equilibrium
behaviour suppresses these oscillations in favour of large diamagnetic moments. We discuss the
special type of inelastic backscattering responsible for relaxation in the case of an isolated dot.
By monitoring the transient behaviour of the induced magnetic moment as the magnetic field is
switched from one value to another we propose to measure the characteristic time of inelastic
backscattering estimated to be of the order of 10−8–10−7 seconds.

1. Introduction

Magnetic properties of small conductors have been extensively discussed over the last few
years (see [1, 2] and references therein). It has become understood that the magnetic
moment (and the associated persistent current) induced by an external magnetic flux is a
clear manifestation of mesoscopic behaviour.

While persistent currents were originally predicted to appear in clean one-dimensional
metallic rings [3], most of the recent discussion has focused on metallic rings containing
impurities [4, 5]. The impurity scattering leads to an important qualitative effect—it
produces ‘forbidden gaps’ in the spectrum of quantized electron energy levels in the loop
when plotted as a function of magnetic flux. As a result, the single-electron energies are
dependent on the flux in an oscillatory way, and dynamical oscillations of the circulating
current induced by a quasi-stationary magnetic flux appear. Static magnetic properties of
small rings and dots have been discussed by several authors [6–12].
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Non-stationary magnetic responses have been studied much less, the discussions being
mostly concentrated on the systems with strong elastic scattering [13–17]. In such systems
the most important feature is Landau–Zener tunnelling through disorder-induced gaps in the
electron spectrum. Consequently, the problem is connected with the energy level statistics,
the results being very sensitive to whether the chemical potential or the number of electrons
is kept constant.

Experimental techniques are available for producing laterally constrained two-
dimensional (2D) electron systems in gated semiconductor heterostructures where the
electron mean free path̀ is greater than the system’s sizeR. In such pure systems the
transport is ballistic and its main features are only weakly influenced by scattering effects
[18]. Recent experiments provide convincing evidence of Aharonov–Bohm oscillations in
ballistic 2D rings in gated semiconductor heterostructures [19] and square quantum dots [20].

The role of disorder is much more complicated in ballistic systems than in diffusive
ones. As was shown in [21–25], the disorder-induced ‘forbidden gaps’ can be important
also in pure systems if the external flux varies in time slowly enough. As a result, one
can discriminate betweendiffusive, ballisticand clean devices. Clean systems are those
where impurity scattering is not important. In [21–25] it was proposed that for the case of
scattering by impurities with ashort-range potentialthe criterion for a device to be clean is

h̄/τel1 � 1. (1)

Here1 is the average interlevel distance whileτel is the time for transport relaxation due
to elastic scattering.

We want to stress here that the above classification is not universal and should be
very much dependent on the phenomenon under consideration. In particular, although the
criterion (1) is correct for short-range impurity potentials it becomes qualitatively wrong
for scattering by a soft potential. In this case transport relaxation and forbidden gaps are
produced by different scattering processes which occur with very different probabilities and
hence can be distinguished from each other. Therefore the definition of a clean system in
this case requires a much less stringent restriction than that given by (1).

At the present time available nanoscale structures do not meet the inequality (1).
Nevertheless, we believe that quantum dots with wide enough undoped (spacer) regions
produced by modulated doping do behave as if they were ‘clean’.

The physical reason for this is that the impurities in these structures produce a
rather smooth potential whose Fourier components decay exponentially with increase of
momentum transfer. On the other hand, the forbidden gaps are determined [26] by the
potential matrix elements corresponding to elastic scattering with momentum transfer∼pF.
Estimates presented below show that disorder-induced forbidden gaps in 2D ballistic dots
with a typical spacer width are so small that they can be ignored for any reasonable frequency
of the flux variation.

In this paper we concentrate on the magnetic response of aclean quantum dot to a
time-dependent magnetic flux8(t). The case of slow flux variation,ω � 1/h̄, on the
scale of the typical interlevel spacing1, is considered (ω = 8̇/8). As a result, one can
assume the electronic levels to adiabatically follow the flux variation. It will be shown
that the Aharonov–Bohm (AB) oscillations are crucially dependent on the relaxation which
leads to a redistribution of the electrons between the time-dependent levels driven by the
flux. In the absence of relaxation, AB oscillations disappear.

The relaxation processes that might be responsible for restoration of the AB oscillations
will be shown to be rather unusual—a relaxation of the induced magnetic moment requires
simultaneously a large momentum transfer and a small energy transfer. Consequently, in



Time-dependent magnetization of a clean quantum dot 2605

an isolated quantum dot, relaxation requires a very special ‘inelastic backscattering’ of
electrons, which cannot be associated with conventional one-phonon scattering processes
since they cannot fulfil the necessary energy and momentum conservation laws. As a result,
the effective relaxation timeτ for inelastic backscattering is large and one can expect strong
non-equilibrium effects, as described briefly in [27].

The paper is organized as follows. In section 2 we formulate the problem and discuss the
possibility of using an adiabatic approximation (in time) for the electron energy spectrum.
We also discuss in this section criteria for Landau–Zener breakdown which destroys the
impurity-produced gaps in the spectrum. In addition we discuss the physics of the non-
equilibrium magnetization in the adiabatic approximation. A quantitative description is
presented in section 3 where we discuss different scales for equilibrium oscillations with the
flux of the magnetic moment and how this picture evolves when temperature and frequency
are increased. In addition we discuss sudden switching of the magnetic flux and possible
measurements of the inelastic backscattering time of electrons.

2. Qualitative discussion

2.1. Formulation of the problem

When considering a time-dependent flux one could expect a non-equilibrium behaviour of
the system. The corresponding description of the kinetics depends on the relationship
between the flux variation frequencyω and the internal rates which characterize both
dynamical evolution and relaxation in the system. Two different time-scales for the dynamic
evolution can be distinguished. The first is related to the interlevel spacing1/h̄ ≈ EF/h̄N

and the second to the inverse time which one needs to form a forbidden gap due to
backscattering by an impurity potential.

To exhibit a pronounced non-equilibrium effect the system has to follow adiabatically the
unperturbed (by the impurity potential) energy levels. In other words, the forbidden gaps
have to be overcome. That can happen at high enough frequency due to Landau–Zener
tunnelling. The estimates given in the next section will show that the above condition can
be met at relatively low frequency. On the other hand, for ¯hω � 1 the time dependence of
the flux 8(t) does not lead to non-adiabatic transitions between the unperturbed levels. As
a result, the electronic states remain coherent in a time-dependent field which leads only to
an adiabatic time-dependent shift of the energy levels, keeping them sharp. If the electron
distribution in energy space corresponds to equilibrium at some timet0, in the absence
of an interlevel relaxation it does not change in time leading to a monotonic increase of
magnetization with the flux increase. At some later timet1 the distribution appears strongly
non-equilibrium with respect to the positions of the levels att1, but it is still sharp in energy
space. Relaxation tends to restore the equilibrium distribution corresponding to to level
positions att1 leading to a decrease of the magnetization. As a result, we arrive at the
AB oscillations of the magnetization. It is worth emphasizing the difference between our
situation and the one where the Landau–Zener tunnelling does not take place [13]. It that
case, the AB oscillations exist both in the absence of relaxation and in the limit of strong
relaxation.

2.2. Criteria for Landau–Zener breakdown

As has been mentioned, disorder produces subgaps in the energy spectrum due to energy
level repulsion (anti-crossing) near points where the unperturbed levels are degenerate. In
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the nearly-free-electron approximation, the width of the subgap near the anti-crossing point
between modesm andn is equal to the matrix element of the impurity potential,Vmn. The
latter has to be estimated in different ways for the cases of short- and long-range potentials.

2.2.1. Short-range potential.For short-range impurities one can express the impurity
potential as a sum of the contributions of different defects:

V(r) =
∑

i

V (r − ri ).

Consequently the characteristic value ofVmn is Vq/A where Vq is the typical Fourier
component of the total potential forq of the order of the characteristic momentum transfer
between the statesm andn, andA is the sample area (we have the 2D case in mind). Then,
we get

|Vq|2 ≈ Ni |Vq |2

whereNi is the number of impurities. As a result, the characteristic value of the subgap,
g, is

g ≈
√

1

A
ni |Vq |2 ≈

√
h̄1

τel
(2)

whereni is the impurity concentration, while1 is the average interlevel distance connected
to the density of statesν by 1 = (νA)−1. In a disc of radiusa, 1 ≈ E0 = h̄2/2m∗a2.

Finally, the ratiog/1 can be expressed as

g

1
≈

√
h̄

τel1
� 1. (3)

Requiring that ratio to be small we recover the inequality (1) as a necessary condition for
being allowed to ignore disorder-induced gaps in thermal properties.

Returning to the time-dependent properties, one must take into account that even if the
subgaps are small, the system must be able to tunnel through them, the probability being

PLZ = exp

(
− πg2

2h̄(dE/dt)

)
. (4)

According to equation (2), in order to make the subgaps unimportant (1− PLZ) � 1 we
have to require the very strong inequality

ω
8

80
>

πg2

4h̄mE0
≈ 1

τelmE0
≈ (kFa)−2

τel
(5)

to be fulfilled. Combining this criterion with the one for the adiabaticity we get

1

h̄
> ω

8

80
>

(kFa)−2

τel
. (6)

It seems very difficult to meet these inequalities in an experimental situation, unless the
samples are extremely clean.

At finite temperature, thermal phonons might also contribute to intergap transitions. To
get the appropriate estimate one should compare the smearing of the spectrum caused by
inelastic collisions, ¯h/τin with the characteristic subgap widthg. It is important that here we
do not need theinelastic backscatteringbecause transitions between closely placed radial
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states also lead to subgap smearing. Estimating the phonon emission rate asg3/h̄3ω2
D we

get the following criterion for subgap smearing:

h̄τin

g
=

(
kBT

h̄ωD

)2
kBT

g
> 1.

It is hard to meet this condition experimentally.

2.2.2. Long-range scattering.To estimate the situation in modulated-doped structures one
must at first map the Fourier components of the potential on a measurable quantity. In order
to express the potential in terms of a transport relaxation time, let us consider a 2DEG plane
separated from the region where donors (or acceptors) are placed with a spacer of thickness
d. According to [28] theinverse mobilitycan be expressed through the Fourier component
D(q) of charge fluctuations as

µ−1 = 2πm2e3

ε2h̄3

∫ 2π

0

exp(−2qd)D(q)F 2(q)

(q + qs)2
(1 − cosθ) dθ. (7)

Hereε is the dielectric constant,q = 2kF sin(θ/2), qs = 2me2/εh̄2 is the 2DEG screening
length, while the form factorF(q) ∼ 1 for a typical system (see [28]). The quantityD(q)

is defined as the Fourier component of the impurity density fluctuations.
Rough estimates for relevant parameters show that only small anglesθ are important,

and one can putkFd � 1, at q � qs. As a result, we get

µ−1 = πm2e3

ε2h̄3q2
s

∫ ∞

0
e−2kFdθD(kFθ) θ2 dθ.

The productM(θ) = e−2kFdθD(kFθ) is just the squared matrix element; one has to compare
this quantity at the characteristic value ofθ with a similar value atθ ≈ 1. As a result, to
scale the important matrix element with 1/τtr one obtains an extra factor

η = M(1)

M(θm)

1

θ2
m

θ2
m =

∫
M(θ)θ2 dθ

/∫
M(θ) dθ . (8)

The correlation functionD is model dependent. We will discuss two usually accepted
models [29, 30] of equilibrium (De) and non-equilibrium (Dne), (frozen) spatial distribution
of impurities. The correlation functionsD(q) have the forms [30]

De(q) = De(0)

(
2qd

1 − exp(−2qd)

)2

(9)

D(q) = Dne(0)
1 + 2q0d

q + q0[1 − exp(−2qd)]
. (10)

Hereq0 = 2πne2/εT0, wheren is the average impurity concentration in the doped region,
while T0 is a freezing temperature at which the impurity diffusion is frozen. According to
[30], T0 ≈ 100–150 K. Atn ≈ 10−12 cm−3, q0 ≈ 4 × 106 cm−1 ≈ kF. Consequently, for
both models we arrive at similar estimates forη (equation (8)):

η ≈ (kFd)2 exp(−2kFd) ≈ 2 × 10−15 at kFd = 20 (11)

and the inequalities (6) can be rewritten as

1

h̄
> ω

8

80
> η

(kFa)−2

τel
. (12)

According to (11), the exponentially small value ofη crucially diminishes the lower limit
for the flux variation frequency. As a result, one comes back to the ‘clean’ picture even
when the variation of the external field is slow.
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Figure 1. Schematic dependences of the energy eigenvalueEm,n on the magnetic quantum
numberm for fixed n (corresponding to a ring-shaped part of the dot): (a) occupied (filled
circles) and unoccupied (empty circles) quantum states at zero magnetic field; (b) energies of
the same states at finite field. To reach equilibrium the system has to to relax via inelastic
backscattering events involving small energy transfer and large momentum transfer (indicated
by the arrow; see the text).

2.3. The physical picture of non-equilibrium magnetization

As an illustration it is useful to first discuss electrons confined to a one-dimensional ring.
The eigenenergies

Em = E0(m − α)2 α = 8/80 (13)

(E0 = h̄2/2m∗a2) of a ring are sensitive to flux and can be labelled with a magnetic quantum
numberm = 0, ±1, ±2, . . .. In zero flux the population of±m-states is symmetric, as in
figure 1(a), and there is no net magnetic moment. Increasing the fluxα shifts the states with
negative (positive) quantum numbers to higher (lower) energies as shown in figure 1(b),
and a net magnetic moment appears. At the same time, a relaxation of the electron system
becomes possible through transitions between high-energy−m-states and low-energy+m-
states (figure 1(b)). The interplay between the flux-driven shift of energy levels and the
‘backflow’ due to relaxation determines the kinetics of the system.

Figure 1 explicitly illustrates the main features of the relaxation processes that can
lead to an equilibration of the momentum distribution. First, they have to beinelastic to
compensate for the energy mismatch that is a result of the quantization of energy levels.
Secondly, it is necessary that they can provide the large momentum required to reverse the
direction of the azimuthal component of the electron momentum (−m → +m). We will
refer to the relevant processes as ‘inelastic backscattering’ and emphasize that this type of
scattering does not play a role in ordinary transport problems; it is special feature of our
system. We will discuss possible mechanisms for inelastic backscattering later.

The situation in a quantum dot is somewhat more complicated than in a ring because of
the quantization of radial as well as azimuthal motion. Nevertheless, the above qualitative
discussion is still relevant; for both generation and relaxation of a magnetic moment in the
dot only the azimuthal motion of the electron is of importance.
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3. Quantitative calculations

3.1. The energy spectrum

In the framework of the accepted model, the electron wave function in a disc can be written
as [31]

ψ = e±imθ χ(r)√
r

(14)

whereχ(r) obeys the equation

χ ′′(r) + [α2 − (m2 − 1/2)/r2 − β2r2]χ = 0. (15)

Herer is measured in the units ofa, while the eigenenergiesE are related to the normalized
flux α (13) as follows:

α2 = 2mE

h̄2 ∓ 2βm β = eH

2h̄c
. (16)

Under the conditions

`c � a � k−1
F (17)

where`c = vF/ωc is the cyclotron radius andkF is the Fermi wave vector [32, 33], one
can treat the ‘magnetic’ energyβ2r2 as a small perturbation in comparison with the Fermi
energy. By doing so one can show [31] that for states with energies of orderEF, the
wave functions are confined near the surface, the energy spectrum being determined by the
expression [34]

Em,n = E0

[
γm,n + 2mα + α2

3

(
1 + 2(m2 − 1)

γ 2
m,n

)]
. (18)

Here γm,n is the nth root of themth Bessel function, i.e.Jm(γm,n) = 0, n = 1, 2, . . . and
m = 0, ±1, ±2, . . ..

We can identify two different energy scales in this spectrum. The smaller scale,E0,
corresponds to the average spacing between levels in zero flux; the larger scale

δE = E0m ∼ E0(kFa) (19)

is set by the characteristic shift of the energy levels when the flux is increased by80. The
existence of these two energy scales results in the two different scales for the flux and
temperature dependences of the induced moment already mentioned.

3.2. The quasi-static magnetic moment

When ωτ � 1 the induced moment can be obtained directly from the thermodynamic
potential of the system. One finds

Meq = c

S

∑
m,n

nF(Em,n)Mm,n (20)

whereMm,n is the magnetic moment of a single quantum state (m,n):

Mm,n = −M0

[
2m + 2α

3

(
1 + 2(m2 − 1)

γ 2
m,n

)]
. (21)

HereM0 = πa2E0/80 and

nF(E) = [
1 + e(E−µ)/kBT

]−1
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Figure 2. (a) The magnetic moment versus normalized magnetic fluxα = 8/80 in a ballistic
quantum dot with fixed chemical potentialµ calculated at various temperatures. The units of
moment,M0 = πa2E0/80, and temperature,E0/kB, contain the quantum unit of flux80 and
the average spacing between energy levelsE0. The fine structure in the flux dependence of the
moment disappears atT ∼ 1, whereas the Aharonov–Bohm oscillations of period unity (80)
persist untilT ∼ kFa (a is the dot radius). (b) Zero-temperature calculations for fixedµ and
for fixed number of particles give qualitatively similar results.

is the Fermi distribution function. Results at different temperatures for the magnetic moment
as a function of magnetic flux for the two cases of constant chemical potential (dot connected
to reservoir(s)) and constant number of particles [35] (isolated dot) are given in figure 2.
We note that the flux dependences of the induced moments appear qualitatively quite similar
for the dot and a metallic ring. An important quantitative difference is that the amplitude
of the moment fluctuations in the ‘clean’ dot is of orderπaevF/c, rather thanπevF`/c as
in a ‘dirty’ metallic ring when` � a. Induced moments on this scale have been recently
observed in a ballisticring system [19].

3.3. The non-equilibrium response

If the time variation of the magnetic flux is not quasi-static (ωτ & 1), essential differences
appear; a non-equilibrium distribution function,fm,n(t), has to replace the Fermi function
nF[En,m(α(t))] when the moment is calculated from equation (20).

To get explicit results we restrict ourselves to the simplest case for which the relaxation
time approximation applies. Here

∂fγ

∂t
= −fγ (t) − nF

[
Eγ (α(t))

]
τγ (t)

γ ≡ m, n. (22)

This approximation is valid at low temperatures when electrons decay spontaneously with
a lifetime τγ (t). The latter depends on the configuration of electronic levelsEγ [α(t)] and
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Figure 3. The magnetic moment in a ballistic quantum dot versus a normalized magnetic flux
that grows linearly with time,α(t) = ωt , from t = 0. The parameterωτ , where τ is the
relaxation time, measures the rate of change of flux. The top left-hand panel shows that the
fine structure in the flux dependence of the moment is smeared whenωτ ∼ 1/kFa (a is the dot
radius). For larger values ofωτ a large diamagnetic moment is proportional toα(t) ∝ t until it
saturates atα ∼ ωτ . The top right-hand panel shows the current response to a sudden change of
flux (cf. top left-hand panel). By monitoring how the current relaxes towards a new equilibrium
value,τ could be measured.

is therefore time dependent.
The result of a numerical calculation of the induced moment for the special case where

the magnetic flux increases linearly with time,α(t) = ωt , is shown in figure 3. For
simplicity, we have assumed the relaxation timeτ to be time independent. This is the case
when the main source of relaxation is due to an exchange of electrons between the quantum
dot and its surroundings. We believe that this approximation gives a qualitatively correct
picture also in general.

Two non-equilibrium effects can be seen. Small deviations from equilibrium result in
a smearing of the fine structure in the flux dependence of the moment. This happens when
ωτ ∼ 1/kFa (see the left-hand inset of figure 3). Large-scale oscillations of the induced
moment, which correspond to the ‘usual’ Aharonov–Bohm effect with a period of the order
of the flux quantum, are not affected. Drastic changes appear when the relaxation time is
so large thatωτ ∼ 1 or smaller. In this case the AB oscillations disappear in favour of
a diamagnetic current—linearly dependent on flux (time)—until it saturates at some large
flux (time). The value of the saturation moment can be readily obtained asMsat ∼ NM0ωτ

. This result tells us that the saturation moment is limited only by a finite relaxation time
τ and can be very large in systems where relaxation is weak. Another interesting feature
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is the transient processes appearing in the case of step-like changes in the flux value. An
example of such a behaviour is shown in the right-hand inset of figure 3. Here the flux
is (instantaneously) changed from one value to another, for which the equilibrium-induced
moment is not very different. Nevertheless, the initial diamagnetic response is quite large
and decays to the new equilibrium value on the time-scaleτ .

3.4. Relaxation mechanisms

A number of mechanisms can be expected to relax a non-equilibrium momentum distribution
in the quantum dot. If connected to a reservoir of particles (fixed chemical potential), the
reservoir acts as a sink for energetic dot electrons and a source of thermal electrons. The
efficiency of this particle exchange mechanism can be characterized by a relaxation timeτe.

Completely different relaxation mechanisms, associated with inelastic backscattering,
come into play if the quantum dot is isolated (fixed number of particles). The small energy
transfer and large momentum transfer called for cannot be provided by impurity or one-
phonon scattering separately [36]. On the other hand, simultaneous scattering by impurities
and phonons is a possible mechanism of inelastic backscattering. Multiple scattering is not
described by the conventional collision operator of the Boltzmann equation, but requires
an analysis that goes to higher order in the small parameter 1/kF`. Using a Green’s
function formalism [37], one finds an order-of-magnitude estimate for the scattering rate
as τ−1

s ≈ h̄/EFτelτph. Here τel is the impurity relaxation time andτph ≈ E3/h̄3ω2
D [37]

is the phonon relaxation time, andωD is the Debye frequency, whileE is the transferred
energy. This energy is proportional to the magnetic flux; for a transition between the
statesn, m1 → n, m2 one hasE ≈ 2E0α|m1 − m2|. Using these estimates and typical
parameters for semiconductor nanostructures one getsτ−1

s ≈ (107–108)α3. We stress that
any scattering mechanism leads to a time-dependent relaxation rate because of the time
dependence ofE, the flux-dependent energy difference between the initial and final states.
Hence, we expect inelastic backscattering, unlike the particle exchange mechanism, to cause
a non-exponential relaxation of the non-equilibrium magnetic moment. The total relaxation
rate can be estimated asτ−1 = τ−1

e + τ−1
s . We believe that the relative importance of the

two mechanisms can be controlled in structures where the coupling between the quantum
dot and adjacent reservoirs can be varied by means of a gate voltage. Among other possible
mechanisms for inelastic backscattering, one can mention inelastic scattering caused by
atomic two-level systems (see [38] for a review) and by electronic two-level systems created
by close pairs of filled and empty donors in a doped region of the structure (always present
in semiconductor heterostructures).

4. Conclusion

In conclusion, we have shown that the criteria for discriminating between ‘ballistic’ and
‘clean’ systems suggested in [22–25] have to be reconsidered for high-mobility modulation-
doped semiconductor heterostructures. As a result, the conditions for such structures to be
considered ‘clean’ can be easily met. In addition, disorder-induced gaps in the electron
spectrum can be ignored while considering dynamical properties in a time-dependent
magnetic field—even one of relatively low frequency.

It is also shown that in a varying magnetic flux the magnetization of a 2D ballistic
quantum dot is very sensitive to the conditions of relaxation in the system. In contrast to the
usual destructive role played by inelastic scattering in mesoscopic phenomena, here inelastic
scatteringrestoresan Aharonov–Bohm type of quantum oscillations in the magnetization.
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In the absence of such relaxation, strong non-equilibrium behaviour suppresses these
oscillations in favour of large diamagnetic moments which are determined by flux rather
than by the Landau level quantization as in bulk materials. A special type of inelastic
backscattering is responsible for relaxation in the case of an isolated dot, and determines
the maximum (saturation) value of the non-equilibrium diamagnetic moment in the case of
a magnetic flux which increases linearly with time. By monitoring the transient behaviour
of the induced moment as the magnetic field is switched from one value to the other one we
propose that it might be possible to measure the characteristic time of inelastic backscattering
estimated to be of the order of 10−8–10−7 seconds.
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